TUGAS AHIR

PERENCANAAN BANGUNAN TRIBUN MENGUNAKAN RANGKA ATAP *STEEL PIPE* (BAJA BULAT) DI SIRKUIT MIJEN, DESA TEMBANGAN, KECAMATAN. MIJEN, KOTA SEMARANG, PROVINSI. JAWA TENGAH

Disusun Dalam Rangka Mememenuhi Persyaratan Untuk Memperoleh Derajad Sarjana Strata Satu Pada Program Studi Teknik Sipil Fakultas Teknik Universitas Tunas Pembangunan Surakarta

Disusun Oleh:

Mardiyanto

NIM : A.0118112

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS TUNAS PEMBANGUNAN SURAKARTA 2023

UNIVERSITAS TUNAS PEMBANGUNAN SURAKARTA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL

Jln. Walanda Maramis No.31 Surakarta 57135 Telp./Fax (0271) 853824 website : www.tsipil.utp.ac.id ; email : tekniksipil@utp.ac.id

BERITA ACARA SIDANG PENDADARAN TUGAS AKHIR

Pada hari Selasa tanggal 24 bulan Januari tahun 2023 jam 10.00 WIB, Secara langsung, tim penguji tugas akhir Program Studi Teknik Sipil, Fakultas Teknik, Universitas Tunas Pembangunan, dengan susunan sebagai berikut :

Ketua	:	Ir. Dian Arumningsih D. P., M.T.	Dosen Pembimbing I	NIDN:	0624096201
Anggota	: 1.	Ir. Sri Haryono, M.T.	Dosen Pembimbing II	NIDN:	0613015801
	2.	Reki Arbianto, S.T., M.Eng.	Dosen Penguji	NIDN:	0614048502

Telah menyelenggarakan sidang pendadaran tugas akhir bagi mahasiswa Program Studi Teknik Sipil Fakultas Teknik UTP Surakarta

Nama : Mardiyanto NIM : A0118112 Judul TA : Perencanaan Bangunan Tribun Menggunakan Rangka Atap Baja Steel Pipet (Baja Bulat) Di Sirkuit Mijen, Desa Tembagan. Kecamatan Mijen, Kota Semarang, Jawa Tengah

Dengan hasil : (coret yang tidak perlu)

🗆 Lulus tanpa perbaikan

Lulus dengan perbaikan, harus selesai paling lambat tanggal : 24 JANUK PI 2023

- 🗆 Diizinkan ujian ulang sekali lagi untuk perbaikan nilai
- 🗆 Tidak lulus, diwajibkan ujian ulang

Demikian berita acara ujian akhir ini dibuat sebenarnya untuk dipergunakan sebagaimana mestinya.

Mahasiswa teruji

Mardiyanto

Disahkan Ketua Program Studi Teknik Sipil

CI/MACH

Herman Susila, S.T., M.T. NIDN. 0620097301

Tim Penguji

Dosen Penguji

Dosen Pembimbing I

Dosen Pembimbing II

Tanda Tangan

Diperiksa Ketua Panitia Tugas Akhir

D.P., M.T. Ir. Dian NIDN. 0624096201

HALAMAN PENGESAHAN

PERENCANAAN BANGUNAN TRIBUN MENGUNAKAN RANGKA ATAP STEEL PIPE (BAJA BULAT) DI SIRKUIT MIJEN, DESA TEMBANGAN, KECAMATAN. MIJEN, KOTA SEMARANG, PROVINSI. JAWA TENGAH

Disusun Oleh

Mardiyanto

NIM: A.0118112

Disetujui Oleh :

Pembimbing 1_

Ir. Dian Arumningsih DP.MT

NIDN:0624096201

Pemhimbing II

Ir. Sri Haryono.,MT.,IPM NIDN : 06013015801

Mengetahui :

Ketua Program Studi Teknik Sipil

Herman Susila, ST.,MT NIDN : 0620097301

SURAT PERNYATAAN BEBAS PLAGIASI

Form TA 14

Yang bertanda tangan di bawah ini:

,

Nama	: Mardiyanto
NIM	: A0118112
Program Studi	: Teknik Sipil

Menyatakan dengan sesungguhnya bahwa Tugas Akhir yang saya buat dengan Judul Perencanaan Bangunan Tribun Menggunakan Rangka Atap *Steel Pipe* (Baja Bulat) di Sirkuit Mijen, Desa Tembangan, Kecamatan Mijen, Kota Semarang, Provinsi Jawa Tengah merupakan hasil karya sendiri dan apabila dikemudian hari ternyata terbukti dinyatakan melakukan plagiasi, maka saya bersedia menerima sangsi berupa apapun.

Demikian Surat Pernyataan ini dibuat dengan sesungguhnya dan tidak ada paksaan dari siapapun.

Surakarta, 19 Januari 2023

(Mardiyanto) NIM. A0118112

ΜΟΤΤΟ

- Dirimu yang sebenarnya adalah apa yang kamu lakukan di saat tiada orang yang melihatmu. (Ali Bin Abi Thalib)
- Jika seseorang bepergian dengan tujuan untuk mencari ilmu, maka Allah

SWT akan menjadikan perjalanannya bagaikan perjalanan menuju surga. (Nabi Muhammad SAW)□

- Raihlah ilmu, dan untuk meraih ilmu belajarlah keadaan tenang dan sabar". 🛛
- Pendidikan merupakan senjata paling ampuh yang bias kamu gunakan untuk merubah dunia. (Nelson Mandela)
- Tiadanya keyakinanlah yang membuat orang takut menghadapi tantangan; dan saya percaya pada diri saya sendiri. (Muhammad Ali)
- Seperti sepasang sepatu, jika kau memakainya dan terasa sakit tandanya itu bukan ukuranmu. (Dewi Widiastuti)

KATA PENGANTAR

Alhamdulillah, puji syukur kehadirat Allah SWT yang telah memberikan rahmat dan inayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir.Tugas akhir ini disusun guna melengkapi persyaratan untuk meraih gelar Sarjana Strata Satu (S1) pada Fakultas Teknik Program Studi Teknik Sipil Universitas Tunas Pembangunan Surakarta. Tugas akhir ini berjudul sebagai berikut.

PERENCANAAN BANGUNAN TRIBUN MENGUNAKAN RANGKA ATAP STEEL PIPE (BAJA BULAT) DI SIRKUIT MIJEN, DESA TEMBANGAN, KECAMATAN. MIJEN, KOTA SEMARANG, PROVINSI.

Dalam penulisan Tugas Akhir ini, tentu tak lepas dari pengarahan dan bimbingan dari berbagai pihak. Maka penulis ucapkan rasa hormat dan terima kasih kepada semua pihak yang telah membantu. Pihak-pihak yang terkait itu diantaranya sebagai berikut :

- 1. Dr. Tri Hartanto,S.T.,M.Sc., selaku Dekan Fakultas Teknik Universitas Tunas Pembangunan Surakarta.
- 2. Herman Susila, ST, MT, selaku Ketua Program Studi Teknik Sipil Fakultas Teknik Universitas Tunas Pembangunan Surakarta.
- 3. Ir. Dian Arumningsih DP.MT, selaku Dosen Pembimbing Utama.
- 4. Ir. Sri Haryono., M.T., IPM. selaku Dosen Pembimbing Pendamping.
- Seluruh Dosen Pengajar Fakultas Teknik Sipil Universitas Tunas Pembanguan Surakarta.
- 6. Ayah saya Panji dan Ibu saya Winarni yang selalu mencintai, mendukung dan mendoakan saya dalam segala hal positif.
- Kakak dan adik saya yang selalu menguatkan dan mendukung saya dalam segala hal positif.
- 8. Sahabat Sobat Teknik yang selalu mendengarkan keluh kesah, memberi saran

iii

9. Teman-teman Teknik Sipil D 2018 yang telah memberi dukungan dalam proses penelitian skripsi saya.

iv

Dalam penulisan tugas akhir ini, penulis menyadari sepenuhnya bahwa Tugas Ahir ini masih jauh dari kesempurnaan karena pengalaman dan pengetahuan penulis yang terbatas. Oleh karena itu, kritik dan saran dari semua pihak sangat penulis harapkan demi terciptanya laporan yang lebih baik lagi untuk masa mendatang.

Surakarta, Januari 2023

Mardiyanto

PERENCANAAN BANGUNAN TRIBUN MENGUNAKAN RANGKA ATAP STEEL *PIPE* (BAJA BULAT) DI SIRKUIT MIJEN, DESA TEMBANGAN, KECAMATAN. MIJEN, KOTA SEMARANG, PROVINSI. ABSTRAK

Mardiyanto

A.0118112

Mardiyanto472@gmail.com

Pembangunan tribun sirkuit di Kabupaten Semarang merupakan fasilitas umum milik swasta yang bertujuan untuk mewadahi komunitas dan pelatihan. Latar belakang dari proyek ini adalah banyaknya minat *drak racese* di Kabupaten Semarang namun tidak memiliki fasilitas yang memadai, direncanakan menggunakan struktur beton bertulang meliputi pelat atap, pelat lantai, *sloof*, balok, kolom dan pondasi *Bore* pile. Dengan adanya perencanaan dan perancangan bangunan fasilitas sirkuit drak racese di Semarang diharapkan dapat menjadi wadah bagi pengemar motocross yang tadinya di Jawa Tengah dan sekitarnya.Bedasarkan perhitungan gempa grafik respons spectrum dari hasil Analisa data tanah nilai parameter percepatan tanah dari website rsa.ciptakarya.pu.go.id. didapatkan Kategori D dengan nilai SDs = 0,72 dan SDI = 0,65 maka dari itu direncanakan struktur Sistem Rangka Pemikul Momen Khusus (SRPMK).Hasil dari perhitungan ini berupa dimensi struktur beserta penulangannya didapatkan pelat atap didesain sebagai pelat dua arah dengan tulangan arah X Ø10-200mm, tulangan arah y Ø10- 200mm., tulangan arah y Ø12-200mm. Balok Induk 1 60cm x 40 cm dengan tulangan tumpuan 5D32, tulangan lapangan 5D32, dan tulangan geser Ø12-240mm. Sloof 40cm x 30cm. Balok Anak 20cm x 30cm dengan tulangan tumpuan 2D19, tulangan lapangan 2D19, dan Dengan mutu betonf'c 35 MPa.

Kata Kunci : Perencanaan tribun, Dimensi dan Penulangan Struktur.

v

PLANNING OF A TRIBUN BUILDING USING STEEL DROPPER ROOF FRAME (ROUND STEEL) IN THE MIJEN CIRCUIT, TEMBANGAN VILLAGE, DISTRICT. MIJEN, SEMARANG CITY,

PROVINCE.

ABSTRACT

Mardiyanto

A.0118112

Mardiyanto472@gmail.com

The construction of the Motocross Circuit Tribune in Semarang Regency is a privately owned public facility that aims to accommodate the community and training. *The background of this project is that there are many drak racese interests in Semarang* Regency but do not have adequate facilities, it is planned to use reinforced concrete structures including roof slabs, floor plates, sloof, beams, columns and bore pile foundations. With the planning and design of the drak racese circuit facility building in Semarang, it is hoped that it can become a forum for drak racese fans who were previously in Sentral java and its surroundings. .id. Category D was obtained with a value of SDs = 0.72 and SDI = 0.65, therefore the structure of the Special Moment Bearing Frame System (SRPMK) was planned. X 10-200mm, y- direction reinforcement 10- 200mm., y-direction reinforcement 12-200mm. Main Beam 1 60cm x 40 cm with 5D32 support reinforcement, 5D32 field reinforcement, and 12-240mm shear reinforcement. Sloof 40cm x 30cm with support reinforcement 4D28, field reinforcement 4D28, and shear reinforcement 12-200mm, and 10- 1100mm shear reinforcement. Column 1 80cm x 80cm with 12D32 reinforcement,. With concrete quality f'c 35 MPa.

Keywords: Grandstand Planning, Dimensions and Reinforcement Structure.

vi

DAFTAR ISI

HALAMAN JUDUL	i LEMBAR
PENGESAHAN ii	
МОТТО	vi
KATA PENGANTAR	V
ABSTRAK	iii DAFTAR
ISI viii	
DAFTAR GAMBAR	xi
DAFTAR TABEL	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Perencanaan	
1.5 Manfaat Perencanaan	4
1.6 Lokasi Perencanaan	4 BAB
II LANDASAN TEORI	6
2.1 Tinjauan umum	6
2.1.1 Struktur Post and Beam	6
2.1.2 Struktur Goal Post	7

vii

2.1.3 Struktur Kantilever
2.1.4 Struktur Membran
2.1.5 Struktur Rangka Ruang
2.1.6 Konsep Rangka Batang Kantilever 10
2.2 Teori Dinamika Struktur
2.2.1 Derajat Kebebasan 10
2.2.3 Sistem Berderajat Kebebasan Banyak (Multi Degree of Freedom 11
2.2.3 Getaran bebas Sistem MDOF 12
2.2.4 Analisis Respons Spektrum 12
2.3 Pengertian Space Frame
2.4 Jenis Sambungan Struktur Space Frame 14
2.5 Dasar Teori Space Frame18
2.5.1 Pembebanan Struktur
2.6 Ketentuan Umum
2.6.1 Desain Batang
2.7 Pengertian Beton <i>Precast</i>
2.7.1 Jenis jenis Pelat Prategang Pracetak Precast Slab
2.7.2 Jenis Sambungan Antara Komponen Beton Pracetak
2.7.3 Perencanaan Pelat Precast Hollow Core Slab
2.7.4 Balok
2.7.5 Kolom Fondasi
2.7.6 Balok
III METODE PENELITIAN 40
3.1 Bagan Alir Penelitian
3.2 Studi Literatur Dan Pengumpulan Data
3.1.1 Studi Literatur
3.2.2 Pengumpulan Data
3.3 Preliminary Desain
3.4 Pembebanan Elemen Struktur
3.5 Pemodelan Analisis Struktur
3.6 Kontrol Desain
3.6.1 Batang Tekan 47
3.6.2 Batang Tarik 48
3.7 Kuat Putus Batang 49
3.8 Perencanaan Sambungan 50

3.8.1 Sambungan Baut	50
3.8.2 Sambungan Las	52
3.8.3 Perencanaan Fondasi	54
BAB IV PRELIMENARY DESIGN	56
4.1 Data Perencanaan	56
4.2 Prelimenary Design Dimensi Struktur Beton	56
4.2.1 Balok	56
4.3 Perencanaan Struktur Bawah	57

4.3.1 Perhitungan Dimensi Balok 57
4.3.2 Perhitungan Dimensi Kolom 59
4.3.3 Plat Lantai
4.4 Perencanaan Struktur Bawah
4.4.1 Perhitungan Dimensi Balok
4.4.2 Perhitungan Dimensi Kolom
4.4.3 Perhitungan Dimensi Plat Lantai
4.4.4 Perhitungan Dimensi Tangga
4.4.5 Membuat Penampang Struktur
4.4.6 Menentukan Jenis Perletakan
4.5 Perencanaan Awal Profil Baja Struktur Atap
BAB V ANALISIS STRUKTUR 109
5.1 Analisis Struktur Atap 109
5.1.1 Perhitungan Beban Mati Atap 109
5.1.2 Beban Hidup Atap 110
5.1.3 Beban Air Hujan 113
5.1.4 Menentukan Penyaluran Beban Mati Struktur 115
5.1.5 Beban Angin 117
5.1.6 Beban Gempa 120
5.1.7 Input Data Gempa Static Equaivalent Menggunakan SAP2000 121
5.1.8 Input Data Gempa Gempa Dinamik Respons Spectrum 123
5.1.9 Menentukan Faktor Pengali 124
5.1.10 Menentukan Massa Struktur Bangunan 127
5.1.11 Menentukan Diafragma 127
5.1.12 Kobinasi Pembebanan 130

5.1.13 Analisis Seluruh Beban yang Bekerja Pada Struktur 131
5.2 Analisis Struktur Bawah
5.2.1 Beban Mati 137
5.2.2 Beban Mati Pelat Latai 137
5.2.3 Beban Mati Pelat Tribun 137
5.2.4 Beban Mati Dinding 137
5.2.5 Menentukan Penyaluran Beban Mati Struktur 137
5.3 Beban Hidup
5.3.1 Perhitungan Beban Hidup
5.3.2 Menentukan Penyaluran Beban Hidup 146
5.4 Penentuan Masa Struktur Bangunan 151
5.5 Menentukan Diafragma 152
5.6 Analisa Beban Tetap 154
5.7 <i>Outtput</i> Beban Tetap 155
5.7.1 Output Bidang M Beban Mati 155
5.7.2 Output Bidang Q Beban Mati 156
5.7.3 Output Bidang N atau Axcial Force Beban Mati 157
5.7.4 Ouput Bidang Displacement Beban Mati 158
5.7.5 Output Bidang M Beban Hidup 159
5.7.6 Output Bidang Q Beban Hidup 160
5.7.7 Ouput Bidang N atau Axcial Force Beban Hidup 161
5.7.8 Output Displacement Beban Hidup 162
5.8 Beban Gempa
5.8.1 Input Data Gempa Static Equivalent Menggunakan SAP2000 168
5.8.2 Input Data Gempa Dinamik Respons Spectrum 170
5.8.3 Menentukan Faktor Pengali 171
5.8.4 Menetukan Modal Analisis 173
5.8.5 Analisis Terhadap Gempa Static Equivalent dan Dinamik Respon Spectrum
5.8.6 Gambar Hasil Struktur 176
5.9 Input Pembebanan Kombinasi 177
BAB VI ANALISA PERHITUNGAN PERENCANAAN 184
6.1 Perhitungan Plat
6.1.1 Pelat Atap 184
6.1.2 Pelat Lantai 191
6.2 Perhitungan Sloof 199

6.3 Perhitungan Balok	
6.3.1 Balok Induk 1	
6.3.2 Balok Induk 2	
6.3.3 Balok Anak	
6.3 Kolom	
6.4.1 Kolom 1	

6.4.2 Kolom 2	223
BAB VII KESIMPULAN DAN SARAN	. 229
7.1 Kesimpulan	229
7.2 Saran	230
DAFTAR PUSTAKA	232

DAFTAR GAMBAR

Gambar 1.1 Lokasi Perencanaan	4
Gambar 2.1 Struktur Post and Beam	. 7
Gambar 2.2 Struktur Goal pos2.4	. 7
Gambar 2.3 Struktur Kantilever	8
Gambar 2.4 Struktur Membran	. 9
Gambar 2.5 Struktur Rangka Ruang	. 9
Gambar 2.6 Kantilever Pada Rangka Batang	. 10
Gambar 2.7 Desain Respon Spektrum	. 13
Gambar 2.8 Struktur <i>space frame</i> sambungan sistem mero	. 15
Gambar 2.9 Struktur <i>space frame</i> sambungan sistem <i>unistrud</i> 15	
Gambar 2.10 Struktur <i>space frame</i> sambungan sistem <i>oktaplat</i>	•
Gambar 2.11 Struktur <i>space frame</i> sambungan sistem <i>space deck</i>	
Gambar 2.12 Struktur <i>space frame</i> sambungan sistem <i>triodetik</i>	•
Gambar 2.13 Pelat prategang pracetak berlubang Hollow Core Slab	29
Gambar 2.14 Pelat prategang pracetak tanpa lubang Solid Slab	29
Gambar 2.15 Pelat prategang <i>Double Tees</i> dan <i>Single Tees</i>	
Gambar 2.16 Sambungan kering pelat precast dengan las	30
Gambar 2.17 Sambungan basah pelat <i>precast</i> dengan <i>grouting</i>	•
Gambar 2.18 Diagram tegangan Pelat <i>Hollow Core Slab</i>	•
Gambar 2.19 Pelat Pracetak <i>Hollow Core</i> dengan <i>Topping</i>	•
Gambar 2.20 Sambungan kering pelat precast dengan las	50
Gambar 3.1 Bagan Alir Penelitian.	. 41
Gambar 3.2 Ukuran Las Sudut.	. 52

Gambar 3.3 : Pile Cap	. 55
Gambar 3.4 : Time scedule	. 55
Gambar 4.1 : Balok plat lantai	. 62
Gambar 4.2 Arah Gaya pada Gording	. 65
Gambar 4.3 Tampilan pada menu Define Gambar 4.4 Tampilan Define Material dan Add Material Property	. 72 . 72
Gambar 4.5 Input Material Beton fc`35 Mpa pada Material Property Data	. 73
Gambar 4.6 Tampilan Define Material dan Add Material Property	. 73
Gambar 4.7 Input Material BJTD 420 Mpa pada Material Property Data	. 74
Gambar 4.8 Input Material BJTD 420 Mpa pada Material Property Data	. 75
Gambar 4.9 Tampilan menu Define dan Section Properties	. 75
Gambar 4.10 Tampilan Frame Section dan Add Frame Section	. 76
Gambar 4.11 Input dimensi kolom K1 80 cm x 80 cm	. 76
Gambar 4.12 Input data penampang kolom K1 80 cm x 80 cm	. 77
Gambar 4.13 Input dimensi balok B1 40 cm x 60 cm	. 78
Gambar 4.14 Input data penampang balok B1 40 cm x 60 cm	. 78
Gambar 4.15 Input dimensi balok Ba 20 cm x 40 cm	. 79
Gambar 4.16 Input data penampang balok Ba 20 cm x 40 cm	. 79
Gambar 4. 17 Input data penampang sloff 30 cm x 40 cm	. 80
Gambar 4. 18 Tampilan menu Define	. 80
Gambar 4. 19 Input data pelat tebal 120 mm	. 81
Gambar 4. 1 Tampilan pada menu draw	. 82
Gambar 4. 21 Pilih Sloof pada Properties of Object	. 82
Gambar 4. 22 Tampilan Sloof	. 83
Gambar 4. 23 Tampilan Balok Induk BI pada ketinggian 2,50 m	. 83
Gambar 4. 2 Tampilan Balok Induk BI dan BA pada ketinggian 4 m	. 84
Gambar 4. 25 Tampilan Balok Induk b1 dan Ba pada ketinggian 9,1 m	. 84
Gambar 4. 26 Tampilan Balok Induk B1 dan Ba pada ketinggian 11,7	. 85
Gambar 4. 27 Tampilan Kolom K1	. 85
Gambar 4. 28 Tampilan menu Draw	. 86
Gambar 4. 29 Tampilan gambar pelat lantai pada ketinggian 4 m	. 86

Gambar 4. 30 Tampilan gambar pelat lantai pada ketinggian 11,7 m	. 86
Gambar 4. 31 Tampilan meny Assign > Joint	. 86
Gambar 4. 32 Tampilan Assign Join Restrains	. 88
Gambar 4.33 Busur Utama 90 Gambar 4.34 Bracing Busur Utama 91	
Gambar 4.35 Rafter / Kuda-Kuda	. 92
Gambar 4.36 Lateral Bracing	
Gambar 4. 37 Tampilan Awal SAP2000 v.20.0.0ct	. 88
Gambar 4. 38 Tampilan Pada Menu File	. 89
Gambar 4. 39 Tampilan New Model	. 89
Gambar 4. 40 Tampilan 3D Truss	. 90
Gambar 4.41 Tampilan 3D Truss	. 90
Gambar 4. 42 Membuat Grid	. 91
Gambar 4. 43 Tampilan Coordinat/Grid System	. 91
Gambar 4. 44 Input Data Perencanaan Pada Define Grid System Data	. 92
Gambar 4. 45 Tampilan Grid	. 94
Gambar 4. 46 Menu Draw	. 95
Gambar 4. 47 Memilih Grid Point Untuk Menggambar Atap Lengkun	. 95
Gambar 4. 48 Tampilan pada Menu Edit	. 96
Gambar 4. 49Tampilan Extrude Points to Lines	. 96
Gambar 4. 50 Tampilan Define Extrusion Path	. 97
Gambar 4. 51 Input Define Extrusiom Path Section Diagonal 1 - 1	. 97
Gambar 4.52 Input Define Extrusiom Path Section Diagonal 1 - 2	. 98
Gambar 4.53 Input Define Extrusiom Path Section Diagonal 2 - 1	. 98
Gambar 4. 54 Input Define Extrusiom Path Section Diagonal 3 - 1	. 98
Gambar 4. 55 Tampilan Titik Section Setelah Input Define Extrusion Path Section	. 99
Gambar 4. 56 Tampilan Menu Draw	. 99
Gambar 4. 57 Tampilan Batang	100
Gambar 4. 58 Tampilan Menu Assign > Joint > Rstraints	100

Gambar 4. 59 Tampilan Assign Joint Restraints
Gambar 4. 60 Tampilan Perletakan Base Plate 101
Gambar 4. 61 Tampilan pada menu Define101
Gambar 4. 62 Tampilan Define Material dan Add Material Property102
Gambar 4.63 Input Material Pipa Baja ASTM A 36 pada Menu Property Data102 Gambar 4. 64 Input Material Plat Baja 37 pada Material Property Data103
Gambar 4. 65 Tampilan Menu Define dan Section Properties103
Gambar 4. 66 Tampilan Add Frame Section Property104
Gambar 4. 67 Input penampang Pipa 4 \parallel – 0,216104
Gambar 4. 68 Input penampang Pipa 3I – 0,25105
Gambar 4. 69 Input penampang Pipa 21 – 0,219 105
Gambar 4. 70 Tampilan Pada Menu Assign 106
Gambar 4. 71 Menentukan Penampang Struktur Disetiap Section 107
Gambar 4. 72 Permodelan Rencana arah X – Z 107
Gambar 4. 73 Permodelan Rencana 3D 108
Gambar 5. 1 Define > Load Patterns Gambar 5. 1 Define > Load Patterns 111
Gambar 5. 2 Tampilan Define Load Patterns 111
Gambar 5. 3 Assign > Joint Load > Displacement 112
Gambar 5. 4 Input Beban Hidup 112
Gambar 5. 5 Tampilan Beban Hidup 113
Gambar 5. 6 Input Beban Air Hujan 114
Gambar 5. 7 Tampilan Beban Air Hujan 114
Gambar 5. 8 Load Frame Setelah Input Beban Mati, Beban Hidup dan Beban Air Hujan
115
Gambar 5. 9 Define – Load Patterns 115
Gambar 5. 10 Tampilan Define Load Patterns 115
Gambar 5. 11 Assign > Joint Load > Displacement 116
Gambar 5. 12 Input Beban Mati 116
Gambar 5. 13 Tampilan Beban Mati 117
Gambar 5. 1 Input Beban Mati

Gambar 5. 2 Define > Load Paterns	. 122
Gambar 5. 3 Tampilan Define Load Patterns	. 122
Gambar 5. 4 Tampilan IBC 2012 Seiamic Load Pattern Arah X	. 122
Gambar 5. 5 Tampilan IBC 2012 Seiamic Load Pattern Arah Y	123
Gambar 5. 6 Define > Function > Respons Spectrum	. 123

on
.24
25
25
26
26
26
27
27
28
28
29
29
30
32
33
33
34
34
.34 .35

Gambar 5.

Gambar 5.

Gambar 5.

Gambar	5.
Gambar	5

- Gambar 5.
- Gambar 5.
- Gambar 5.

- Gambar 5.
- Gambar 5.
- Gambar 5.

Gambar	5.	
Gambar	5.	
Gambar	5.	
Gambar Gambar	 5. 5. 53 Tampilan 3D Distribusi Beban Hidup Pelat	51
Gambar	5. 54 Define > Mass Source	51
Gambar	5. 55 Tampilan Mass Source 15	52
Gambar	5. 56 Tampilan Mass Source Data 15	52
Gambar	5. 57 Assign > Joint > Constraints	;3
Gambar	5. 58 Tampilan Define Contraints 15	;3
Gambar	5. 59 Tampilan Diaphragm Contraints 15	;3
Gambar	5. 60 Analyze >Set Analysis Options 15	;4
Gambar	5. 61 Tampilan Analysis Options 15	;4
Gambar	5. 62 Analyze > Run Analysi	;4
Gambar	5. 63 Tampilan Set Load Cases to Run 15	;5
	64 Bidang Momen Beban Mati Arah X15	5
	65 Bidang Momen Beban Mati Arah Y15	5
	66 Bidang Momen Beban Mati Tampilan 3D15 67 Bidang Q Beban Mati Arah X15	;6 ;6
	68 Bidang Q Beban Mati Arah Y15	6
	69 Bidang Q Beban Mati Tamilan 3D15	7
	70 Bidang N atau Axical Force Beban Mati Arah X15	7
	71 Bidang N atau Axical Force Beban Mati Arah Y15	7
Gambar	5. 72 Bidang N atau Axical Force Beban Mati Tampilan 3D 15	58
Gambar	5. 73 Displacement Beban Mati Arah X 15	58
Gambar	5. 74 Displacement Beban Mati Arah Y 15	;8

Gambar 5.

Gambar 5.

- Gambar 5.
- Gambar 5.

Gambar	5.		
Gambar	5.		
Gambar	5.		
Gambar	5.		
Gambar Gambar	5. 5. 75]	Displacement Beban Mati Tampilan 3D	159
Gambar	5.761	Bidang Momen Beban Hidup Arah X	159
Gambar	5.77	Bidang Momen Beban Hidup Arah Y	159
Gambar	5. 78	Bidang Momen Beban Hidup Tampilan 3D	160
Gambar	5. 79	Bidang Q Beban Hidup Arah X	160
Gambar	5.80	Bidang Q Beban Hidup Arah Y	160
Gambar	5. 81	Bidang Q Beban Hidup Tampilan 3D	161
Gambar	5.82	Bidang N atau Axcial Force Beban Hidup Arah X	161
Gambar	5.83	Bidang N atau Axcial Force Beban Hidup Arah Y	161
Gambar	5. 84	Bidang N atau Axcial Force Beban Hidup Tampilan 3D	162
Gambar	5. 85 1	Displacement Beban Hidup Arah X	162
Gambar	5.86	Displacement Beban Hidup Arah Y	162
Gambar	5.87	Displacement Beban Hidup Tampilan 3D	163
Gambar	5. 88 I	Define > Load Patterns	167
Gambar	5. 89′	Tampilan Define Load Patterns	168
Gambar	5. 90	Tampilan IBC 2012 Seismic Load Patterns Arah X	168
Gambar	5. 91	Tampilan IBC 2012 Seismic Load Patterns Arah Y	168
Gambar	5.92	define > Function > Respons Spectrum	169
Gambar	5. 93	IBC 2012 > Add New Funcition	169
	94	TampilanResponsSpectrumIBC2012Function170	Definition
	95	Define > Load Case > Add New Loa 171	d Case
	96	Tampilan Load Case > Respon Spectrum > Modify Show/Load	d Case 171

- Gambar 5. Gambar 5.
- Gambar 5.

Gambar 5.

Gambar 5.

Gambar 5.

Gambar 5.

Gambar	5.			
		97	Tampilan Load Case Data – Respon Spectrum Arah X	171
		98	Define > Load Case Modal	172
		99	Load Case Modal > Modify/Show Load Case	172
		100	Tampilan Load Cases Data – Modal	.173
		101	Analyze > Set Analysis Options	173
Gambar	5.	102	Tampilan Analysis Options	174
Gambar	5.	103	Analyze > Run Analysis	174
Gambar	5.	104	Tampilan Load Case to Run	174
Gambar	5.	105	Tampilan Analysis Complete	175
Gambar	5.	106	Bidang Normal/Aksial Statis – X arah X	175
Gambar	5.	107	Bidang Normal/Aksial Statis – X arah Y	176
Gambar	5.	108	Bidang Normal/Aksial Statis – X tampilan 3D	176
Gambar	5.	109	Define > Load Combination	177
Gambar	5.	110	Tampilan Menu define Load Combination	177
Gambar	5.	111	Tampilan Kombinasi 1	178
Gambar	5.	112	Tampilan Kombinasi 2	178
Gambar	5.	113	Tampilan Kombinasi 3	179
Gambar	5.	114	Tampilan Kombinasi 4	179
Gambar	5.	115	Tampilan Kombinasi 5	180
Gambar	5.	116	Arah X	180
Gambar	5.	117	Y	181
Gambar	5.	118	3D	181
Gambar	5.	132	3D	182
		•••••		
111				

Gambar Gambar 5. 2 Tampilan <i>Define Load Patterns</i>	111
Gambar 5. 3 Assign > Joint Load > Displacement 112	
Gambar 5. 4 <i>Input</i> Beban Hidup	
Gambar 5. 5 Tampilan Beban Hidup	113
Gambar 5. 6 Input Beban Air Hujan	
Gambar 5. 7 Tampilan Beban Air Hujan 5. 8 <i>Load Frame</i> Setelah <i>Input</i> Beban Mati, Beban Hidup dan Beban Air Hujan	114 115
Gambar 5. 9 Define – Load Patterns	115
Gambar 5. 2 Tampilan Define Load Patterns	115
Gambar 5. 3 Assign > Joint Load > Displacement 116	
Gambar 5. 10 <i>Input</i> Beban Mati	116
Gambar 5. 11 Tampilan Beban Mati	117
Gambar 5. 12 <i>Input</i> Beban Mati	120
Gambar 5. 13 Define > Load Paterns 122	
Gambar 5. 14 Tampilan Define Load Patterns	122
Gambar 5. 15 Tampilan IBC 2012 Seiamic Load Pattern Arah X	
Gambar 5. 16 Tampilan IBC 2012 Seiamic Load Pattern Arah Y	123
Gambar 5. 17 Define > Function > Respons Spectrum	123
Gambar 5. 18 IBC 2012 > Add New Function	124

xvi

5. 19 Tampilan Respons Spectrum IBS 2012 Funtion Definition 124
5. 20 Tampilan Respons Spectrum IBC 2012 Function Definition 125
5. 21 Add New Load Case > Respons Spectrum > Modify/Show Case
Gambar 5. 22 Tampilan Load Case Data > Respons Spectrum Arah 126
Gambar 5. 23 Tampilan Load Case Data > Respons Spectrum Arah 126
Gambar 5. 24 Tipe Beban Dinamis 126
Gambar 5. 25 Define > Mass Sourse 127
Gambar 5. 26 Tampilan Mass Source 127
Gambar 5. 27 <i>Select > All</i> 128
Gambar 5. 28 Tampilan Diaphragm Constraints 128
Gambar 5. 29 Analyze > Set Analysis Options 129
Gambar 5. 30 Tampilan Analysis Options > Space Truss 129
Gambar 5. 31 Analyze > Run Analysis 130
Gambar 5. 32 Tampilan Set Load Cases to Run 132
Gambar 5. 33 Tampilan 3D bidang N (Axial/Gaya Normal) 133
Gambar 5. 34 Tampilan Bidang W/Beban Angin 133
Gambar 5. 35 Tampilan Beban Mati 134
Gambar 5. 36 Tampilan Bidang Beban Hidup 134
Gambar 5. 37 Tampilan Bidang Statis 135
Gambar 5. 38 Tampilan Bidang Dinamis 135
Gambar 5. 39 Tampilan 3D Hasil Analisis 136
Gambar 5. 40 <i>Define > Load Patterns</i>
Gambar 5. 41 Tampilan Deine Load Patterns 138
Gambar 5. 42 Assign > Area Loads > Uniform to Frame Shell 139
Gambar 5. 43 Input Beban Mati pada Pelat Lantai

Gambar	
Gambar 5. 44 Input Beban Mati pada Pelat Tribun	139
Gambar 5. 45 Tampilan Beban Mati pada Pelat Lantai	141
Gambar 5. 46 Tampilan 3D Distribusi Beban Mati Pelat Lantai	141

Gambar

Gambar

5. 47 Assign > Frame Loads > Distribute
5. 48 Input Beban Mati pada Balok Sebesar 10 Kn/m 142
5. 49 Input Beban Mati pada Balok Sebesar 6,25 Kn/m 142
5. 50 Input Beban Mati pada Balok Sebesar 0,8 Kn/m 143
Gambar 5. 51 Tampilan Beban Mati pada Portal Arah Y Z 143
Gambar 5. 52 Tampilan Beban Mati pada Portal Arah X Z 144
Gambar 5. 53 Tampilan Beban Mati pada Portal Arah X Z 144
Gambar 5. 54 Tampilan Beban Mati pada Portal Arah X Z 145
Gambar 5. 55 Tampilan Beban Mati pada Portal Arah X Z 145
Gambar 5. 56 Tampilan 3D Distribusi Beban Mati Balok 146
Gambar 5. 57 <i>Define > Load Patterns</i>
Gambar 5. 58 Tampilan Define Load Patterns 147
Gambar 5. 59 Assign > Area Loads > Uniform to Frame Shell
Gambar 5. 60 Input Beban Hidup pada Pelat Tribun 148
Gambar 5. 61 Input Beban Hidup pada Pelat Lantai 148
Gambar 5. 62 Tampilan Beban Hidup pada Pelat Tribun 149
Gambar 5. 63 Tampilan Beban Hidup pada Pelat Lantai 150
Gambar 5. 64 Tampilan 3D Distribusi Beban Hidup Pelat 151
Gambar 5. 65 Define > Mass Source
Gambar 5. 66 Tampilan Mass Source 152
Gambar 5. 67 Tampilan Mass Source Data 152
Gambar 5. 68 Assign > Joint > Constraints
Gambar 5. 69 Tampilan Define Contraints 153
Gambar 5. 70 Tampilan Diaphragm Contraints

Gambar

Gambar

Gambar 5. 71 Analyze > Set Analysis Options	154
Gambar 5. 72 Tampilan Analysis Options	154
Gambar 5. 73 Analyze > Run Analysi	154
Gambar 5. 74 Tampilan Set Load Cases to Run	155

5. 75 Bidang Momen Beban Mati Arah X 155
5. 76 Bidang Momen Beban Mati Arah Y 155
5. 77 Bidang Momen Beban Mati Tampilan 3D 156
5. 78 Bidang Q Beban Mati Arah X 156
Gambar 5. 79 Bidang Q Beban Mati Arah Y 156
Gambar 5. 80 Bidang Q Beban Mati Tamilan 3D 157
Gambar 5. 81 Bidang N atau Axical Force Beban Mati Arah X 157
Gambar 5. 82 Bidang N atau Axical Force Beban Mati Arah Y 157
Gambar 5. 83 Bidang N atau Axical Force Beban Mati Tampilan 3D 158
Gambar 5. 84 Displacement Beban Mati Arah X 158
Gambar 5. 85 Displacement Beban Mati Arah Y 158
Gambar 5. 86 Displacement Beban Mati Tampilan 3D 159
Gambar 5. 87 Bidang Momen Beban Hidup Arah X 159
Gambar 5. 88 Bidang Momen Beban Hidup Arah Y 159
Gambar 5. 89 Bidang Momen Beban Hidup Tampilan 3D 160
Gambar 5. 90 Bidang Q Beban Hidup Arah X 160
Gambar 5. 91 Bidang Q Beban Hidup Arah Y 160
Gambar 5. 92 Bidang Q Beban Hidup Tampilan 3D 161
Gambar 5 . 93 Bidang N atau Axcial Force Beban Hidup Arah X 161
Gambar 5. 94 Bidang N atau Axcial Force Beban Hidup Arah Y 161

Gamb	ar
Guino	u

Gambar

Gambar 5. 95 Bidang N atau Axcial Force Beban Hidup Tampilan 3D 162
Gambar 5. 96 Displacement Beban Hidup Arah X 162
Gambar 5. 97 Displacement Beban Hidup Arah Y 162
Gambar 5. 98 Displacement Beban Hidup Tampilan 3D 163
Gambar 5. 99 <i>Define > Load Patterns</i> 168
Gambar 5. 100 Tampilan Define Load Patterns 169
Gambar 5. 101 Tampilan IBC 2012 Seismic Load Patterns Arah X 169
Gambar 5. 102 Tampilan IBC 2012 Seismic Load Patterns Arah Y 169
Gambar 5. 103 define > Function > Respons Spectrum 170
5. 104 IBC 2012 > <i>Add New Funcition</i>
5. 105 Tampilan Respons Spectrum IBC 2012 Function Definition 171
5. 106 Define > Load Case > Add New Load Case 172
5. 107 Tampilan Load Case > Respon Spectrum > Modify Show/Load Case
Gambar 5. 108 Tampilan Load Case Data – Respon Spectrum Arah X 172
Gambar 5. 109 Define > Load Case Modal 173
Gambar 5. 110 Load Case Modal > Modify/Show Load Case 173
Gambar 5. 111 Tampilan Load Cases Data – Modal 174
Gambar 5. 112 Analyze > Set Analysis Options 174
Gambar 5. 113 Tampilan Analysis Options 175
Gambar 5. 114 <i>Analyze > Run Analysis</i> 175
Gambar 5. 115 Tampilan Load Case to Run 175
Gambar 5. 116 Tampilan Analysis Complete 176
Gambar 5. 117 Bidang Normal/Aksial Statis – X arah X 176
Gambar 5. 118 Bidang Normal/Aksial Statis – X arah Y 177

Gambar

Gambar

Gambar 5. 119 Bidang	g Normal/Aksial Statis – X tampilan 3D 17	77
Gambar 5. 120 Define	e > Load Combination	78
Gambar 5. 121 Tampi	lan Menu <i>define Load Combination</i> 17	78
Gambar 5. 122 Tampi	lan Kombinasi 1 17	79
Gambar 5. 123 Tampi	lan Kombinasi 2 17	79
Gambar 5. 124 Tampi	lan Kombinasi 3 18	80
Gambar 5. 125 Tampila	n Kombinasi 4 180)
Gambar 5. 126 Tampila	n Kombinasi 5	
Gambar 5. 127 Arah 2	K 181	
Gambar 5. 128 Y	182	
Gambar 5. 129 3D	182	

DAFTAR TABEL		11
--------------	--	----

Tabel 3.1 Faktor Keutamaan Gempa	.Error!	Bookmark not defined.
Tabel 3.2 Ukuran Minimum Las Sudut Beban	.Error!	Bookmark not defined.
Tabel 4.1 Tebal Minimum Balok Non-Prategang ata Tidak Dihitung	u Pelat S . Error!	SatuArah bila Lendutan Bookmark not defined.
Tabel 4.2 Dimensi Balok Rencana	.Error!	Bookmark not defined.
Tabel 4.3 Perhitungan Dimensi Balok	.Error!	Bookmark not defined.
Tabel 4.4 Perhitungan Dimensi Kolom	.Error!	Bookmark not defined.
Tabel 4.5 Beban Mati Berdasarkan PIUG 1983	.Error!	Bookmark not defined.
Tabel 4.6 Beban Hidup Berdasarkan PIUG 1983	.Error!	Bookmark not defined.
Tabel 4.7 Beban Mati Berdasarkan PIUG 1983	.Error!	Bookmark not defined.
Tabel 4.8 Perhitungan Dimensi Balok	.Error!	Bookmark not defined.
Tabel 4.9 Perhitungan Dimensi Kolom	.Error!	
Tabel 4.10 Titik Ordinat arah X	.Error!	Bookmark not defined.
Tabel 4.11 Titik Ordinat arah Y	.Error!	Bookmark not defined.
Tabel 4.12 Titik Ordinate arah Z	.Error!	Bookmark not defined.
Tabel 5.1 Data Kecepatan angin	.Error!	Bookmark not defined.
Tabel 5.2 Faktor Tiupan Angin	.Error!	Bookmark not defined.
Tabel 5.3 Koefisien Situs <i>Fa</i>	.Error!	Bookmark not defined.
Tabel 5.4 Koefisien Situs F_v	.Error!	Bookmark not defined.
Tabel 5.5 Perhitungan Nilai N	.Error!	Bookmark not defined.
Tabel 6.1 Momen Per meter Jalur Tengah Beban Terbag defined.	gi Rata E	rror! Bookmark not
Tabel 6.2 Tabel Rekapitulasi Penulangan Pelat Atap	.Error!	Bookmark not defined.
Tabel 6.3 Momen Permeter Jalur Tengah Beban Terbag defined.	gi Rata E I	ror! Bookmark not
Tabel 6.4 Tabel Rekapitulasi Penulangan Pelat Lantai	.Error!	Bookmark not defined.
Tabel 6.5 Output Element – Frame Sloof	.Error!	Bookmark not defined.
Tabel 6.6 Output Element – Frame Balok Induk 1	.Error!	Bookmark not defined.

Tabel 6.7 *Output Element – Frame* Balok Induk 2...... Error! Bookmark not defined.

Tabel 6.8 Output Element – Frame Balok Anak	Error! Bookmark not defined.
Tabel 6.9 Output Element – Frame Kolom 1	Error! Bookmark not defined.
Tabel 6.10 Output Element – Frame Kolom 2	Error! Bookmark not defined.

Tabel 2.1 Tinggi Minimum Balok Non Prategang	. 35
Tabel 2.2 Ketebalan Selimut Beton	. 35